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and how can this be assessed quantitatively?

4. How can the presence of noise be included in such an analysis?
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i [ EXECUTIVE SUMMARY i ?
\ APPLICATION OF SENSITIVITY VECTORS TO THE MEASUREMENT | |
\ l AND MODELLING OF MAGNETOSTATIC FIELDS j
| .
OBJECTIVE |
| I
| l The objective of this report is to develop the analytic techniques ‘
' required for quantitative assessment of the sensitivity of magnetic field !
measurements to quasi-static magnetic sources. |
i
l APPROACH |
\
To accomplish this objective we first use the concept of the gradient }
' vector to define a '"sensitivity vector" for a given field measurement, and ‘
l then relate this vector to the results obtained from the reciprocity theorem
of electromagnetism. The derivations will then be extended from magnetic
[ dipoles to higher order moments. Several non-linear cases will be examined,
and techniques will be developed to account for the presence of noise.
I RESULTS
N -a In this report, the mathematical basis of sensitivity vectors has been
4 I
l developed, with specific application to the measurement and modelling of '
i [ magnetic fields. In the course of analyzing several examples, the following
5 : !
i questions were answered:
§ [ 1. Given two magnetic field measurements, what criteria must be
¥ satisfied to allow determination of the two dipole components |
i consistent with that field? i
. - [ 2. F9r a measurement of the vector magnetic field at a fixed
distance from a dipole source, what is the optimum magnet-
[ ometer position?
3. How do various configurations of single axis magnetometers
‘ compare in terms of their ability to determine model parameters,
[
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5. What is the relationship of the sensitivity vector concept to
E the reciprocity theorem of electromagnetic fields?

i 7oA

s,

6. How can sensitivity vectors be used to study multipole models?

7. What is the interpretation of a sensitivity vector for a
non-linear model?

8. What is the position dependence of a vector magnetometer,
and how does it vary with position?

9. Where can a magnetometer be placed relative to the model to
insure adequate signal to noise ratio?

Based on the ability of the sensitivity vector approach to answer these
questions quantitatively, it appears that this type of analysis may be
valuable for optimizing magnetometer array configurations. It is reassuring
that the results obtained in this report are consistent with both a modeller's
intuition and more abstract mathematical analysis, particularly in that this
method can be readily extended to more complicated systems where intuition
fails.

RECOMMENDATIONS

B b e e Ll kel ben - D R

Two specific recommendations follow from these results:

1) Interactive computer code should be developed to allow accurate
and rapid analysis of magnetometer sensitivity and comparison of
magnetometer configurations.

=
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2) The sensitivity vector analysis should be extended to include the
magnetic field from electric current distributions, and possibly
the electric field from these currents.
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I. INTRODUCTION

The purpose of this report is to develop the analytic techniques re-
quired for quantitative assessment of the sensitivity of magnetic field
measurements to quasi-static magnetic sources. To do this, we will first

"sensitivity vector"

use the concept of the gradient vector to define a
for a given field measurement, and then relate this vector to the results
obtained from the reciprocity theorem of electromagnetism. The deriva-

tions will then be extended from magnetic dipoles to higher order moments.

Several non-linear cases will be examined, and techniques will be deve-

loped to account for the presence of noise.
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II. THE CONCEPT OF A SENSITIVITY VECTOR

Let us consider an object that is a source of electric and magnetic
fields. We are able to make electromagnetic measurements at some distance
from the object, and wish to use these measurements to obtain a mathema-
tical description of the field sources. We can accomplish this by
defining a hypothetical model for the sources and by adjusting various
model parameters until the fields produced by the model match the observed
ones. In practice, this process is complicated by linear dependence of
various model parameters for a particular set of measurements, by the
presence of noise in the measured data, and by the inability of the model
to explain certain details of the fields. The last one of these compli-
cations can be remedied only by altering the model and will not be consi-
dered in this report. The first two, linear dependence and noise, can be
addressed using sensitivity vectors.

We will treat each measurement as a scalar*. Measurement of a vector
magnetic field is equivalent to three single axis field measurements that
determine three orthogonal vector compunents. Other scalars that we
might measure are the component of the magnetic field parallel to the

B3

earth , the field magnitude Iﬁl, or electric

I8

earth's geomsgnetic field,
eart:hl

field components E, and magnitude IEI. In general, we will make field

i

measurements Fi at points T An arbitrary number of different measure-

1

ments can be made at a single point, in whiéh case F, = F, but ; = ;

i j i 3.
The process of modelling involves using these measurements to specify the
parameters of a model which reproduces the fields to the desired accuracy.

Suppose the model is located at ;' and is specified by n model parameters

Hj. As an example, a magnetic dipole model at a known location has three

*i.e., a scalar quantity as opposed to a vector quantity, not to be con-
fused with a total field magnetometer.

4

h- SR




T |

parameters i m,M,=m and M, = m, . Addition of a quadrupole adds

Sl " R N 3

five more parameters to the model.

If m measurements F, are made to determine the n parameters

i A

can ;ay that the field or measurement space has n dimensions while the

, we

source or model space has m dimensions. If the F's and M's are linearly

related, we can write

bl T1 R T 11M Hl
= . . . (2.1)
Fy Tvi - -+ - Tym iy
which in matrix notation is
F=1N (2.2)

where F is a n x 1 matrix; Misamx1 matrix, and % is the m x n trans-
fer matrix. If the F's and M's are not linearly related, as would be the
case if dipole location was a parameter in the model, we can linearize
the equations about a point in model space. Non-linear examples will be

treated in a later section.

In particular, each element T represents the value of the 1th

1)

field measurement, i.e. F,, if only one model term M

1 g contributes, i.e.
Hy = 6kj‘ Thus a horizontal row of ¥ corresponds to the field equation
for tihe complete model and describes how a particular measurement is
affected by each source term, while each column of ¥ describes how a par-
ticular source term affects each of the measurements. If there are more

measurements than model parameters, Eq. (2.1) will represent an over-

determined set of equations. However, it is possible that a pair of model
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-y

st~ [T
u B

Loy

—

l
i

sl

Y

SRR LT




parameters may not be totally independent, resulting in coupled columms

in %. Then % might be singular so that the set of equations will

not have a unique solution for ﬁ given % and %. Similarly, if two or

more field measurements are linearly related, two or more rows of % would ,

be linearly dependent. This will pose a problem if there is an insuffi-

cient number of independent field measurements to solve Eq. (2.1) for the 5

model parameters. | y
As a simple, two dimensional example of how a set of data relates to

a model, let the model be a magnetic dipole ; located at a known point ;'.

We will attempt to make measurements of Bx at points ;1 and ;2 in order

to determine the unknown dipole components m and my. The magnetic

induction B is given by

TR R L LT B TN e
i 4n I’; % ;'| ; = ; 3
so that Bx satisfies the equation
' |
# 4 !
E L a
k . gk i
‘' . s 3 e e mﬁ y"] ' My (2.4) ] |
; l' Bx(r) - S (x - x")- i R 4
i IR A !

For two Bx measurements, we will have two simultaneous equations, linear
in ;, that are of the form of Eq. (2.4). We must determine the values of

'E ;1 and ;2 for which these two equations have'a unique solution. As we

'} will see, sensitivity vectors will allow us to do this and also to identify




-~

the optimum values of ;1 and ;2.

We can define vector spaces for both the field measurements and the
model parameters, so that the elements of ¥ and M become the components
of vectors F and ﬁ. As an aid in understanding the relationship of

several measurements to the model, we can define a gradient operator in

model space by

(2.5)

~

where i, j, k, m are the unit vectors in each direction in model space.

In our two-dimensional example,

v '—Li*"—j (2.6)

3. =v T (2.7)

The interpretation of §1 is straightforward: gi indicates the direction
of the change in model N that produces the maximum change in the measure-

ment Fi' Any change in N that is perpendicular to §i will be undetected

by Fi' Thus, the direction of the sensitivity vector can be used to

determine the source configuration for which F, has the maximum sensiti-

i

vity and the configuration which is not detected by F The magnitude of

i.
the sensitivity vector is proportional to the maximum field produced at
the measurement point by a given strength source and can be used to

determine the relative sensitivities of several measurements.

For linear systems, the components of the sensitivity vector for a

i {
P ]
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i

particular measurement Fi is in fact a row of ?. To show this, we can

write Eq. (2.2) as

¥, =L Tiij (2.8)
k|
and Eq. (2.7) as
> 3 9
S = —— (F,) &= -"T—'( T - M) é (2.9)
i k2=:1 ank 17k ; '&Lk =1 o iy k

where ép is the kth unit vector.

Since the Tij are independent of M, this becomes

m

. Lol
5y -2 g, M9 %

k=1
(2.10)

m m
Z Tij ijék = Z Tix B

j>k=1 k=1

Thus §i is a vector in model space whose components are the ith row of T.
While we have obtained this simple result from an apparently circuitous
route, it provides us with a better understanding of the significance of

each row: S1 and the ith of T can be used to determine the sensitivity of F1

to changes in the model ﬁ, and §1 vectors can be plotted to help visualize how

measurement sensitivity depends upon measurement location. For non-linear
systems, which can not be described using equations of the form of Eq. (2.1)
and (2.2), we will show subsequently that the sensitivity vectors are still

valid and can be readily determined analytically or numefically without

explicitly linearizing the system of equations.
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III. A TWO-DIMENSIONAL DIPOLE MODEL

~

->
In the simple two~dimensional model of a magnetic dipole m with com-

~

ponents m and my’ the field in the x-direction is given by Eq. (2.4).

The sensitivity vector becomes

P =-> >
S(r, r') . Bx(r) (3.1)
u
or, after dropping the Z% for convenience,
> > > i - -> .y
S(r, r') = ————— {3(x -x"2 - |r - 7|94
&, 372 2 G B e i
(3.2)
+30x - x) 0 = v}
If the dipole is at the origin, r' = 0 and
‘ - - ;
: §(;, ;) = -LS {(3x2 - rd)i + 3xyj} (3.3) !

r i

We can use Eq. (3.3) to calculate the sensitivity vectors for measurements

E of Bx in the xy plane. It follows that
atl
g s, =L (%2 - 12 s, = 3% (3.4)
& S l,..5 y 1’5
¥

If all measurements are made at the same distance from origin then
];l = Vx2+y2 =1 and

5 = 3x2 - 1 sy = 3xy (3.5)

The sensitivity vector components and magnitudes at sixteen points are

listed in Table 3.1 and plotted in Figure 3.1. Several important features

“

s ST A I S ST
a9t - s

are immediately obvious. At points A and E, a measurement of Bx detects

—_—




TABLE 3.1

Sensitivity vectors at several points equidistant from a dipole.

are plotted in Fig. 3.1.

\POL X s 3
LA + .00 2.00 0.00 2.00
: 0.00
S B %o.87 1.281 hhos | 181
: 0.49
¢ Yo.se 0.00 haa 1.41
f 0.82
D *0.27 -0.78 Yo.18 1.10
0.96
E 0.00 -1.00 0.00 1.00
; +1.00

The data

et heeel wesm N R

‘ 1 » '

et e e

pag | i [
] [— ——

-

’

.l

[N
[ ot

R it




" e . ‘ A,w-wmm'w*"'vy‘c",-»nxm:«(-"v“'
P e e ey e

Py e G BEES RN D N RN Sl ey

NUCTR——

pu—

a ==

i B ,
5' M : ,
% -
" \ i

Figure 3.1. The sensitivity vectors for measurements of Bx at unit dis-

tance from a fixed magnetic dipole. The coordinates of the points are

listed in Table 3.1.
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fields from m but not from my. The sensitivity at A is twice that at E.
At point C, my is detected but not m . The sensitivity components Sx and
Sy are equal to each other at point B and at point D, but the magnitude
of $ is 1.81 at B and only 1.10 at D.

If Bx is to be measured at two locations for the purpose of deter-
mining both m and my, the figure can be used to determine which combina-
tions will not provide a solution for both m and my' If the two Bx
measurements are made at the two A points, or at the two E points, it
will not be possible to determine my because both sensitivity vectors are
parallel to the m axis. Similarly a measurement at A and another at E
will not work Any two C measurements have parallel sensitivity vectors
and are thus unsatisfactory. These are measurement combinations for
which the matrix ¥ in Eq. (2.2) has no inverse.

The figure can also be used to determine which combinations provide
a good determination of m and my. Two parallel vectors were shown to be
bad. Two perpendicular vectors may be good, but will two larger, non-
pérpendicular vectors be better? A measure of the combined "information"
contained in two sensitivity vectors can be defined in terms of the

magnitude of their cross-product
ve 3 x3, (3.6)

1f §1 and §2 are parallel, V = 0, If §1 and §2 are perpendicular, v

will be large. In the two-dimensional example

Ve|s s -8 s | 3.7)
19 "%
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For two B measurements in adjacent quadrants, V = 3.28, for two D measure-

ments, V = 1,22, implying that in the presence of noise, it would be

yr—

significantly better to measure Bx at adjacent B points than at adjacent

D points. The values of V for pairs of measurement points in the first

and second quadrants areflisted in Table 3.2. As might be expected from

the figure, adjacent D and E points have a low V value of 0.78. Note the

symmetry of the table across the heavy-lined boxes. 1
As a second example, suppose we have a single vector magnetometer

that measures Bx and By at a single point (x, y). If the model is a dipole

located at the origin and lying in the x-y plane, the sensitivity vector

for each field component is given by

3 = o [(3x2 < £431 & (3xy)§] '

r
(3.8) i

2 o { 2L $¥%ya ‘
Sa,) - L [Gni + Gy2 - 23] |

G e by s $ TEmn 0 GEENE I TN AN M ey

The cross product V becomes

V= lsx(nx)sy(n))- sy(nx)sx(ny)l

= —%3|(3x2 - r2)(3y2 - r2) - (3xy) (3xy)| = —3E (3.9)
r r

O R R A R R R R

This result indicates that the ability of a vector magnetometer to deter-

mine the components of the dipole depends solely on the distance bf the

R G
,-n-rr,

magnetometer from the dipole, and not upon the relative orientation of

the dipole and the magnetometer. This is apparent in Fig. 3.2, which

ey
Nt
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1
TABLE 3.2 l i
The quantity V = |S S -8 S_ | computed for pairs of B_ measurement "
2 T % % - 3 r L

points in the first and second quadrants for the sensitivity vectors ’
in Table 3.1.
i i
FIRST QUADRANT SECOND QUADRANT l ; !
A B c D E D c B I A ;
,———ﬁ : |
A 0 2.56 2.82 1.56 0 1.56 2.82 2.56 0 ‘j
g B | 2.56 o f 1.80 | 2.00 | 1.28 o |1.80 i3.28 2.56 ]
.
5]¢€ 2.82 1.80 0 1.10 1.41 1.10 0 1.80 2.82 I
£
&
= 1.56 2.00 1.10 0 0.78 1.22 1.10 0 1.56 -
U
E 0 1.28 1.41 0.78 0 0.78 1.41 1.28 0 "

oy

TABLE 3.3

g
P

The coordinates and sensitivity vector components for Bx and By measurements

in the first quadrant. The data are plotted in Fig. 3.2. j} !
B B 2
Mx —
S S § S i)
Location Coordinates X y X y 3
A 1.00, 0.00 2.000 0 0 -1.000 ¢ :
B 0.92, 0.38 1.561 1.062 1.062 -0.560 ?
‘ C 0.71, 0.71 0.500 1.500 1.500 0.500 =
f D 0.38, 0.92 -0.560 1.062 1.062 1.561 T
; E 0.00, 1.00 | -1.000 0 0 2.000 ! ‘
i
; !
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Figure 3.2. The sensitivity vectors for measurements of Bx and By at unit
distance from a fixed magnetic dipole. The coordinates of the points are

listed in Table 3. 2.
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shows the Bx and By sensitivity vectors for a vector magnetometer at a
constant distance from the dipole. At locations A and E, the Bx magneto-
meter is sensitive only to m s while the By magnetometer is sensitive
only to my. Thus the calculation of n from B can be performed with equal
accuracy at all points on the circle in the figure. We will show later

that the location of a vector magnetometer becomes significant when using

a model with higher-order moments.
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IV. THE INFORMATION MATRIX
While the quantity V provides a measure of sensitivity and the

ability to invert the transfer matrix to determine the model parameters,

we need more complex models and thus must find a multidimensional equi-

valent of V. Extension of Eq. 3.5 to three dimensions is straightforward,

- PO S nin.

with V defined by the vector triple product ‘

<>

->
83 < (S

v=§-(§2x§3)=§2-('s’3x§1)- 2

1 2) (4.1)

Note that V is equal to the volume in model space enclosed by the three sensitivity
vectors. If any two of the vectors are parallel, V = 0. We see that for

a three parameter model, V measures how well the sensitivity vectors for

a set of measurements 'span" model space. In the absence of noise or

computational inaccuracy, an n parameter model can ideally be specified

using n measurements that have orthogonal sensitivity vectors spanning

model space. In the three-dimensional case, three measurements are re-

P —

quired but additional measurements may increase V either because some of

the measurements may have low sensitivity or non-orthogonal sensitivity

vectors.

B R PR IR

P

In order to extend V to more than three dimensions, we need to intro-

;
. duce the information matrix. The jth component of the sensitivity vector
; for the 1th measurement is (§1) and is given by Eq. (2.10)
; b ]
- 3
= = T .
: Gy =1y R O
1
4

80 we can rewrite Eq. (2.8) as

e
- -’Q,

- - - T '.
F, ;:-r1j My §(§1)j M, 31 M (4.3) . !

—
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P >
where %i‘ is the transpose of the column matrix equivalent to Si' We
can multiply Eq. (4.3) on the left by gi to obtain, for an m dimensional

model,

= T 2 (4.4)
R A B 8

l\l 2 3 :
where R, is termed the "information matrix" and is an m x m square, symmetric
i
.th
matrix particular to the i  measurement. If there are n measurements,

the n equations of this form can be summed to yield

n n n
by v oo Ty
z %ihi = E (si§Jl i = z Ki A (4.5)
i=1 i=1 i=1

which can be salved for &

n =1 L n
DI ;giyi-’rl;%gi 4.6)

i=1

with K being the m x m information matrix for the entire set of measure-
ments. Equation (4.6) represents a solution to the "inverse problem'" in
which field data are used to determine certain source parameters. In the
equation, the n Fi will be known, since these are the field measurements,
and the gi and & can be calculated for the chosen model. However, if ﬁ
does not have an inverse, we cannot determine ﬁ.

As an example of this, let us return to the two-dimensional dipole

example in Section 3. If measurements are made at points A and E, the

sensitivity vectors and information matrices will be

#
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v . 2.0
1 0.0
~ r [2-0\.0 0.0) 4.0 0.0
' Ky =88 = ¥ '
‘ 0.0 0.0 0.0 |
% -1.0 N 1.0 0.0 4.7) ﬁ
S = R =
2 0.0 % 0.0 0.0 |
n, n n 5-0 0-0 |
R=R, +R, = |
L 0.0 0.0

Because R has a zero determinant, it has no inverse and we can not deter-
mine both dipole components. This is as expected, since for these two
measurements, V = 0,

We can make the connection between the determinant of K and V by

i writing
i
; 511 s | :
gl - gz - (4.8) i
S S g
12 22 i
b
$
and computing detlkl i
= - 2 = y2 %
det|R| = (5,5, 515,02 = V (4.9) 3

to find that our n~dimensional V is simply

V= (det|R]* (4.10)

We now see that V, which provides a measure of how well a set of measure-

SN O N N G S e e ey ey Geaan M B BN G e ey

ments span the model space, is also a measure of how readily the informa-

T e PN e T T

tion matrix can be inverted as required to solve the inverse problem. Given
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Y "
this introduction to Si’ V, and K, we are now prepared to work several

examples.

et emmel N B

4.1. The Two-Dimensional Dipole

Equation 4.4 and the data listed in Table 3.1 can be used to compute E
the information matrix for each measurement in quadrants I and II in Fig. '
3.1, and the information matrix for all paitrs of measurements. J

The results, listed in Table 4.1, are consistent with Table 3.2 and show

]
o

that certain pairs such as Al-A2, Al-El and C1-C2 have a singular infor-
mation matrix. The pair B1-B2 had the largest value V in Table 3.2 and

is now seen to have a diagonal information matrix with large, equal

- v :
eigenvalues. In this case, R can be written as

b

¥aat (4.11) } |
] where A is the eigenvalue and } is the identity matrix. Equation 4.6 [\
{
reduces to o
n
N =) -
M= Egi F, (4.12) Ly
1 &)
} i=1 -
b1 P y !
The j component of } becomes
n n ‘
-1 g oo -
My = 2. (5, Fy = 3 Z_: SO (4.13) !
i=1 = J
] We recognize the summation as a matrix multiplication and write ?}
N -1 l
M= 3T ¥ (4.14) |

{ ihus for properly chosen measurement points, solution of the inverse

|
—

problem reduces to a trivial matrix multiplication using the transpose of

tue original T matrix. This is the motivation for finding sets of {)
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measurement points where the sensitivity vectors are orthonormai.

As an example of this, let us assume that we can make'bﬁg Bx field
measurement at the arbitrary point (0.75, 0.66), between points B and C in
Fig. 3.1, and that we want to find the second point so that ﬁ;isydiagonal
and has equal eigenvalues. Using Eq. (3.3), we find that g and g will

1 2
be

2 0.69
S. =
T \i.a9
N l 2x2 ~ y2 A
SZ= —-5 = k = (4.15)
r 3xy B

The information matrix for these two measurements is

% 3 (2x2 -~ y2)2 + 0.48r10 3xy(2x2 - y2) + 1.03r!0
R= —
10

E

(4.16)
3xy(2x2 - y2) + 1.03r10 (3xy)2 + 2.22r10

N
Rather than use Eq. (4.16) to find the values of x and y where R is di-

agonal and has equal eigenvalues, it is more convenient to determine the

points where

18,1 = I8, and 8 . $,=0 (4.16)

From Eqs. (415), it follows that Eq. (4.16) is satisfied by

$

2 = %1.49 x 70.69 y (4.17)

Visual examination of Fig. 3.1 shows that the points with this sensitivity
will be located approximately as follows

Quadrants I & IIL between D & E, r < 1
(4.18)

Quadrants II & IV between A & B, r > 1

—

i
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We can now proceed to calculate the locations exactly using Eqs. (4.15)

and (4.17)

—%— (2x2 ~ y2) = % 1.49 |
r

(4.19) t

& Gxy) = 3 0.69
r

The most direct method of solving these simultaneous, non-linear equations

is to solve first for r and then for x and y, which gives the values

r = 1.057 r = 0.856
x =% 1,013 x =% 0.125 (4.20)
y = 3 0.299 y =% 0.847

These data are plotted in Fig. 4.1. The significance of this calculation
is that the results were predicted approximately using Fig. 3.1. Thus one
strength of sensitivity vectors is their suitability visualizing measure-

ment sensitivity.

4.2 The Single Vector Magnetometer

PP,

!
{
We can now use the information matrix to examine the vector magnetometer (
example discussed in Section 3. If the magnetometer measures Bx and B_ at a %

4

point (x, y), Eqs. (3.8) can be used to compute the information matrices for

measurements of Bx and By:

AP P Y T

P RN R R G Gy e, e G, S G S G G G Gy ey

; P B

. b Tl B

>

% A 1 (3x2 - r2)2 3xy(3x2 - r2)

£ RB . (4.21)
; x rlo 3xy(3x2 - r?) (3xy)?

t
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Fig. 4.1. Four locations where the Bx sensitivity vector (solid) is per-

pendicular to the dashed vector and has the same magnitude.
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{
Fe
n 1 (3xy)? Ixy(3y2 - r?) ;
RB e 7 (4.21 cont'd)
| y r 3xy(3y2 o r2) (3y2 - r2)2

The information matrix for a vector magnetometer is given by

1 |
~ n N i
Rv = RB + RB %
x y ;
4x2 + y2 3xy 1
-t (4.22) ;
8 3xy x2 + 4y? ;
It follows immediately that
N
4
det lRl e
r
and, consistent with the previous result in section III,
N f
V= [det lRI];i - _zé_ (4.23)
r

Since V is determined by r but is independent of x and y, this shows that
there is no optimum position for the vector magnetometer for a fixed dis-

v
tance from the dipole. Equation (4.22) also shows that R is diagomal for

measurements on either the x or y axes. !

In a later section, we will extend this example to include different

noise in the x and y axis magnetometers.

4.3 Multiple Bx and By.Hagnetometers

Y T IR R

OO PN BN AN G g G e ey e SN GEER O BEED  GEE SIS I G ey

The analysis techniques developed in the preceeding sections can be
applied to the row of either 11 Bx or 11 By single~axis magnetometers shown
in Fig. 4.2. The sensitivity vectors and information matrices for each mag-

netometer are listed in Tables 4.2 and 4.3, with the source assumed to be
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Fig. 4.2. A row of Bx or By magnetometers near a magnetic dipole.
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TABLE 4.2

Sensitivity vectors and information matrices for the line of Bx magneto-

meters in Figure 4.2. Sx = (3x2 - r)r"5, Sy = 3xy r°
<> N
Position Coordinates ¥ Sx sy |s| R
0.001 0.000
A -4.0, 1.0 4.12 0.026 -0.010 0.028
0.000 0.000
0.003 -0.002
B -3.0, 1.0 3.16 0.054 -0.028 0.061 :
-0.002 0.001
0.016 ~-0.013
C -2.0, 1.0 2.24 0.125 -0.107 0.165
-0.013 0.011
0.031 -0.094
D -1.0, 1.0 1.41 0.177 -0.530 0.559
-0.094 0.281
0.082 0.246
E -0.5, 1 1.12 -0.286 -0.859 0.905
0.246 0.738
1.000 0.000
F 0.0, 1.0 1.0 -1.000 0 1.000
0.000 0.000
0.082 -0.246
G 0.5, 1.0 1.12 -0.286 0.859 0.905
-0.246 0.738
0.031 0.094
H 1.0, 1.0 1.41 0.177 0.530 0.559
0.094 0.281
0.016 0.013
I 2.0, 1.0 2.24 0.125 0.107 0.165
0.013 0.011
. 0.003 0.002
J 3.0, 1.0 3.16 0.054 0.028 0.061
0.002 0.001
0.001 0.000
K 4.0, 1.0 4.12 0.026 0.010 0.028 ,
0.000 " . 0.000

: i
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Sensitivity vectors and information matrices for the line of By magnetomers
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TABLE 4.3

| in Figure 4.2. S = 3xy r-s, Sy = (3y2 -r?)r"s.
- s X ]
Position Coordinates sx sy e g
0.000
A -4.0, 1.0 4.12 -0.010 -0.012 0.015
0.000
0.001
B -3.0, 1.0 3.16 -0.028 -0.022 0.036
0.001
0.011
C -2.0, 1.0 2.24 -0.107 -0.036 0.113
0.004
0.281 -0.094
D -1.0, 1.0 1.41 -0.530 0.177 0.559
-0.094
0.738 -0.861
E -0.5, 1.0 1.12 -0.859 1.002 1.319
-0.861
0.000
F 0.0, 1.0 1.0 0 2.000 2.000
0.000
; 0.738
J G 0.5, 1.0 1.12 0.859 1.002 1.319
| 0.861
‘ 0.281
| H 1.0, 1.0 1.41 0.530 0.177 0.559
0.094
| 0.011 -0.004
I 2.0, 1.0 2.24 0.107 -0.036 0.113
-0.004
0.001 -0.001
J 3.0, 1.0 3.16 0.028 -0.022 0.036
-0.001
i
| 0.000
| K 4.0, 1.0 4.12 0.010 -0.012 0.015
0.000
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a dipole located at the origin. The sensitivity vectors are plotted in
Figs. 4.3 and 4.4 both as scalar functions of x and as vectors at each
measurement point.

The plots of Sx and Sy versus x in Fig. 4.3 can be seen to correspond
to plots of the Bx field of the m and my dipole components, respectively.
This will be explained in terms of the reciprocity theorem in Section 6.
Examination of the Sx and Sy curves can be used to choose optimum loca-
tions for a Bx magnetometer. For example Bx measured at E and G would be
good for determining my, but Bx at F would be more sensitive to m .

Choice of measurement locations is simplified by the vector plot in the
lower half of the figure. The three largest vectors are at E, F, and G
and appear to span the dipole space relatively well. Addition of points
) and H will make only small improvements, since these vectors are signi-
ficantly smaller than the parallel vectors at G and E, respectively.

The plots in Fig. 4.4 show that the sensitivity of By to m is the

same as that of Bx to my’ but By is twice as sensitive to my as Bx is to

: m . Thus, for a row of magnetometers displaced from the source in y

direction, measurements of By are superior to measurements of Bx. The
vector plot in Fig. 4.4 shows that By measurements at locations E and G
have large, nearly perpendicular sensitivity vectors. Both figures show
that there is a serious loss in sensitivity for measurement locations for
which x > 2y.

Given the sensitivity vector data and information matrices listed in
Tables 4.2 and 4.3, we can calculate the quantity V for various combina-
tions of Bx and By measurements, as listed in Table 4.4, Several

important points become apparent in the table. A vector magnetometer at

(0.0, 1.0) has a V of 2.0, greater than any of the combinations of 2 to 11
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Fig. 4.3 (Upper). The quantities sx and Sy plotted as a function of x for

>
the Bx magnetometers in Fig. 4.2. (Lower). A vector plot of S for the 3 ("

same data. ! i
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Fig. 4.4 (Upper). The quantities sx and Sy plotted as a function of x

>
for the By magnetometers in Fig. 4.2. (Lower). A vector plot of S for

the same data.
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TABLE 4.4

The quantity V for various combinations of Bx and By magnetometers. The

ey
=S
el

locations are shown in Fig. 4.2. The mean distance of the measurements

to the dipole is listed under r.

; i ¥ d

V= [detIEl];ft

a S i {
Locations r By BY Y BY Plot No. -! 1 j
A 312 0 0 0 i o
B 3.16 0 0 0.002 l |
c 2.2 @ 0 0.016 ] |
B LA @ 0 0.249 2

E 1.2 0 0 1.025 3 }

F 1.0 0 0 2.000 4 "

E, G 1.1 049 1.1 2.3 5 i

E, F, G ' 1.08 1.311  2.978  4.445 6 ;j
D, F, H 1.27 0.773 1.511 2.740 7 4 1

>, E, F, G, H 1.21 . 1,581  3.517  5.144 8 2‘

) 1.06  0.859  1.718  3.174 9 __

¥, G, 1.18  1.054  2.054  3.502 10 i]

F, 6, 8, 1,3,k 248 Iwyz i 3on s 11 -

ALL 11 2.28 .1.616  3.538  5.203 12 :

| B, D, I 2.27 0.088 0.006  0.281 13 f]
C, E, H 1.59 0.161  0.696  1.485 14 ; 1
ol c, D, 1 1.96  0.101  0.034  0.296 15 4 |
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Bx magnetometers. By measurements generally have a larger V than Bx mea-
surements, which must result from the fact that the row of magnetometers

is displaced from the dipole in the y direction. ' Identification of the

trends in the table can be simplifiedin Fig. 4.5 by plotting V for each type of

measurement (Bx’ By, or g) as a function of the mean distance from the 3
dipole to the measurement locations. In order to separate an increase in
V due to a decrease in mean distance from one due to an increase in the
number of magnetometers, the data are sorted by number of signals. For ‘

-
example, two Bx measurements, two By measurements, and one B measurement

each have two signals. The graph shows several trends. For any series

P ey

of measurements, V decreases with increasing mean range; the line through

points 2v, 3v, and 4v has a slope of -6, consistent with Eq. 4.23 for a

' '

single vector magnetometer. Except at large mean distances, VB > VB .
y X
Whether this is true in general may depend on the choice of measurement
locations. The graph also shows that high V can be obtained at large mean
distances by using a large number of measurements. However, V is 5.144
->
for five B measurementsclose to the dipole, whereas adding the six more

-
distant ones increases V only by 1%. For the 3 closest B measurements, V

equals 4.445, only 147 below the value for 5 vector measurements.

Y BT R

The E and G sensitivity vectors for a By measurement were shown to ;

be nearly perpendicular in Fig. 4.4. A simple quadradic equation can be

P usblicns. i

solved to show that the By vectors will be perpendicular for two pairs of

N MmO ey e T, /M

PR

measurement locations: x = * 0.56y and x = + 3.56 y. At the first, which

Y
is close enough to be useful, R is diagonal with equal eigenvalues and

V = 1.44. This is plotted in Fig. 4.5 as point 16y. However, the choice

B, G ATY on s

—

of this pair of locations over E and G would depend on the relative impor-

v
tance of R being diagonal versus V being 20% larger. The fact that By

—

P——— R L S
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Fig. 4.5. The quantity V plotted as a function of mean distance r from the
data in Table 4.4. The lines connect sets of measurements using the same
type and number of magnetometers. The plot numbers are listed in Table 7
4.4; x, y, and v stand for Bx’ By and ;musurements. See the text for

points 16y and 17v. , i
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measurements F and G (point 9y) and measurements E and G (point 5y) have
almost the same V while having x-~direction separations of 0.5 and 1.0,
respectively, indicates that the apparent linear relation between log V
and log r doesn't necessarily hold for changes in measurerxent configura-
tion in the near field region.

In Fig. 4.5, the points 5v, 9v, and 17v are for two vector magneto-
meters, with 17v corresponding to both magnetometers located at the same
point (0.0, 1.0), for a V of 4.0. This indicates that while a large V is
desired, it is possible to artificially enlarge V by repeating a measure-
ment twice. This could be avoided by dividing V by the number of measure-
ments taken, which would show Bx and By at position F to have a V/n of 1.0

and By at positions E, F and G to have a V/n of 0.99.

4.4 The Effects of Noise

In the preceding sections, we analyzed several different examples and

studied the variation in V as a function of distance. If the measurements
are affected by either external or instrument noise, then the signal at
large distances will be masked by noise, so that such a measurement can not
contribute fully to the modelling process. This effect can be accounted

for by defining the total information matrix by

%

w, R (4.24)

B~ 3

Rrorr’

i
where vy is a weighting function that is zero for signals buried in noise

and 1 for clean signals. For example, we can define a suitable w by

s, - n n
. T b
v, % 1l - 5 for By < sy (4.25)

wi = (0 for ni > si

where s, and n, are the signal and noise amplitude for the 1th
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measurement. Since the magnitude of the signal is determined by both the
str-ngth of the source and the sensitivity vector for that measurement, we

= > >
can replace n /s, by INiI/IS where N, is a noise sensitivity vector

il’
that contains the relative strength of the noise source to the signal
source. The use of lgil is reasonable, since we showed previously that
the magnitude of the sensitivity vector indicated the maximum signal from

a dipole with unknown orientation. From Eq. (4.22), we find that, for a

single vector magnetometer

pre . =
9| | v |
N B Ya B 1a
R=[1-— P e (4.26)
Isg | ] “x Isg 1] "y
s y

It follows from Eq. (3.8) that

> >
55 | = .t.. ’4x2 *y2 |5, | = <+ "xz + by? (4.27)
X r §

y r

Suppose that, for a given dipolar source, the signal to noise ratio for a

measurement of Bx on the y axis is unity for y = 2.0. At that point

-
I | [Ny |
x x g
1= 3 | s g so [Ny | =0.125 (4.28)
B 8 ”

> >
If ve assume that [N, | = [Ng |, we can calculate how V for the vector mea-
y X

surement depends on distance along the y axis. The results, plotted in
Fig. 4.6, show that at y = 1.0, V corrected for noise is 10% smaller than

the original value. At y = 1.5, V is 32% smaller. At y = 0.5, the correc-

tion is only 1%.
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As a final example of the addition of noise to the analysis, we
stated earlier that V for a single vector magnetometer depended only on

distance from the dipole. If the noise field is not the same for both

| > lﬁB |, then there will be an optimum magnetometer
X y

B, and By, i.e. INB

>
location. Continuing the previous example, let us assume that ]NB | = 0.250
X

and lﬁB [ = 0.125. On the x-axis, the total information matrix is given by
y - ;
Bx :
4(1- —- x3) 0
2
v
R = —— (4.29)
x®
0 (1- N, x%)
y
while that on the y-axis is
- 3
(1-Ng y%) 0
x
A ]
R = “}?‘ (4.30)
y NB
0 4(1——21 v%)

At ‘the points (1, 0) and (0, 1), V has the values 1.75 and 1.68, respec-
tively, compared to 1.81 when both noise sensitivities were 0.125. This
is consistent with Fig. 3.2, since the larger noise in Bx can be partially
offset by measuring Bx where it is the largest -- i.e. on the x-axis.

If the weighted information matrix is used in analyzing the row of
magnetometers, the curves in Fig. 4.5 will be seen to fall off more
quickly with mean distance. A detailed analy:sic of various magnetometer

configurations will require realistic estimates of signal and noise

>
strengths, to insure that |N1| is specified correctly. Comparison of
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expected performance with that observed from actual field measurements
might allow the use of an empirical noise weighting function, rather than
given by Eq. (4.25). Thus we have developed techniques for using sensi-
tivity vectors for analyzing and comparing various magnetometer configura-
tions, both in the ideal noise-free case, and when noise limits the
distance at which measurements can be made. Our next step is to relate
this work to the reciprocity theorem prior to beginning quadrupole

analysis.
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V. QUADRUPOLES AND HIGHER MOMENTS
The preceeding analysis used the sensitivity vector obtained by com-
puting the gradient of the field with respect to the model parameters.

The ith measurement was shown to be given by

F =87 M (5.1)
i = S1 M 5

For a dipole model, vector notation lets us write this as

=

>
F, =8, M (5.2)

However, Figures 4.3 and 4.4 showed that the components of these sensiti-
vity vectors have the same spatial dependence as the field of a dipole.
This and Eq. (5.2) are simply demonstrations of the reciprocity theorem,
which will be shown to provide the basis for interpreting the sensitivity

of a magnetometer to magnetic quadrupoles and higher order moments.

5.1 The Sensitivity of a Magnetometer to a Distributed Magnetization

We have considered the magnetic field produced by a point magnetic

dipole

> Yo fam. FENE-F) m
e Iz~ &S E =

(5.3)

For a source which is a distributed magnetization, we can identify the
-
magnetization M(;) as a magnetic dipole density and integrate Eq. (5.3)

over the source volume to obtain

;(;) - &[[&R:'L‘ (F-F)E -1t - ﬁ(;'l ] a3 (5.4)
4m '; - 25 [T - ;'I
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Alternatively, the field can be determined by noting that
>
B(f) = -4 (¥) (5.5)

with ¢ being described by the traceless tensor multipole expansion listed
in Table 5.1. The separation of the source into dipole, quadrupole and
higher moments is ideal for modelling, and wethus see the need for expres-
sions describing the sensitivity vectors that relate a field measurement
to each multipole moment. Based on our previous discussion, we could
compute the gradient of each potential term in Table 5.1 to obtain the
corresponding contribution to E, and then compute the gradient of each B with
respect to the moment to obtain the sensitivity vector. Rather than
do this, we will use the magnetic vector potential X to derive an ex-
pression equivalent to Eq. (5.4) This expression will help explain the
physical significance of sensitivity vectors.

If we represent a single axis magnetometer by a small pick-up loop, then
the magnetometer output will be proportional to the flux ¢ coupling the

magnetometer, given by

0 -fE(r) v de (5.6)

where da is the normal to an element of surface bounded by the loop.

. ->
Because V - B = 0, we can write

B(r) = ¥ x K(‘r’) (5.7)

so that

o-foZ(r)-d‘é (5.8)

Stoke's Theorem can be used to convert this to the line integral
> -
¢ = fA(r) + dR (5.9)

where di 1s a length element of the pick-up coil system. We now need to
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TABLE 5.1 5

The Traceless Tensor Multipole Expansion for a Distributed Magnetization
3 3

3
¢ (r) =E m ¢, + 2 z: Qij¢ij e o n

i=1 i=1 j=1

DIPOLE

-L_.j: . 1y 43
o, b 3 m, fM(r )d3r!' l
v

»

QUADRUPOLE |

1 3x2 - r2 ¥ S
¢xx i 5 Qxx = /‘[ZX'Lix(t') =

v

->
r

. 17(?')] d3r'

wiN

il 3}!2 = 1'.'2_ o : >, 2 > > ] 3¢
¢Yy 4 21'5 ny /[2y My (r ) 5 3 ! 1'1(1. )] d°r
v

£ 2 2
B 1 3z -=r¢ 2 £
( R e Q, = ﬂZz'blz(;') -$ T M('{')] d3r
g ! 2r |
! v
l ) = - _l.& Q =Q e "M ("l) - y'M > 3.1
Xy yx 4w 21_5 Xy yXx = y = y x(r G

v

1 3
b “ ey "W 5 Qg = Qy = ./‘[y'nz(;') o Z'My(';')] o
v

Pt - ' -P' ‘ -y' 3 "
Xz zy T 21‘5 sz sz = [x Mz(r ) - 2 Mx(r )] dr

v




o

> >
relate A to !, and do this by starting with Maxwell's fourth equation

->
vx§=uovxu (5.10)
which becomes
> >
V x (Vx A) = uo(V x M) (5.11)

> > >
But the vector identity V x (V x A) = V(V - A) - v2A lets us write

V24 = 9(7 - A) - u_(V x M) (5.12)

The Coulomb gauge can be chosen to set the first term on the right to
zero, leaving

V2AG) = -u (7 M(T)) (5.13)

which is Poisson's equation. 1In cartesian coordinates, the solution is

i - &'

> U S
A(;) = Z%[LLM d3r! (5‘14)
v

> > >
The vector identity VV x U = V x (VU) - VUV x U can be used to rewrite this

as
Z(_’) = _L.l.g V'xﬁ-_{—'L- d3r - h Al —1_ x H(;')d3r (5.15)
EhR T [E-2 W - & ’
v v

The first volume integral can be converted into a surface integral that

vanishes for any bounded magnetization distribution. Therefore

-> H -+
A(T)= ?% /MG') x g' <I—_E-.1—_;'—I->d3r (5.16)
v
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Substituting this into Eq. (5.9), we find

H ->
e=22¢ | [HGE) xv(5=)ad | - & (5.17)
3 fr =¥
v

The terms of the scalar triple product can be permuted and the order of

integration reversed to obtain

u —
oo torud —2 1. ugy ate (5.18)
Lk JE -
v

Recall that a test current Ip flowing in the pick-up coil has a vector

M- p— g P ey G ey e

potential
- il T
Ay =2Rg_db (5.19)
; -7
' 0 associated with a magnetic field
: & £
B B (£') = V'x A (F') (5.20)
l p P

With this identification, we may write Eq. (5.18) as
> >
o = —fl—fnp(?') - ME') 43¢ (5.21)
P :

Thus we see that for an arbitrary pick-up loop configuration, the contri-

bution to the magnetometer output from a source element at ' can be

wamp WP SRS WP O o

' >
determined from the magnetic field Bp produced at T by passing a test
éurrent Ip through the pick-up coil. The reversal of the order of inte-
gration prior to Eq. (5.18) and the identification of the line integral

in Eq. (5.19) are simply a statement of the electromagnetic reciprocity

e s -
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theorem. Comparison of Eqs. (5.2) and (5.21) results in this identifica~
tion:

At a given source location, the sensitivity vector for a

single axis magnetometer is equivalent to the magnetic

field produced at that location by passing a unit test

current through the magnetometer pick-up coil.
Since the magnetometers used in Fig. 4.3 and 4.4 were assumed to be small,

>
it is correct that their field Bp would be dipolar. Interpretation of
Fig. 3.1 is also straightforward. The sensitivity vector for each Bx mag-
netometer location corresponds to the magnetic field produced at the
origin by passing a test current through the magnetometer.
Equation (5.21), with its simple interpretation, provides the key for
understanding the sensitivity to higher moments: the integrand
F 5 >
Bp(r') « M(r') can be broken down into various multipole terms using a
> >
Taylor's expansion of Bp(?') and a multipole expansion of M(?'), so that
5
Bp represents the sensitivity to the dipole component E, each spatial gra-
->

dient of Bp represents the sensitivity to the corresponding quadrupole
moments and so forth. If the magnetometer is a simple scalar instrument,

->
Bp can be obtained from Eq. (2.3), where mp is the unit dipole moment

produced by IP. For a Bx magnetometer, mp = i, For a gradient magneto-
->
meter, Bp(?) will be characteristic of a magnetic quadrupole, but the
sensitivity of this instrument to a magnetic dipole will still be given by
B -+ m.
P
Based on this discussion, we will proceed to determine the sensitivity

of a vector magnetometer to a dipole-plus-quadrupole source. Calculation

-
of the components of Bp is straightforward. There are nine gradients of

.’
Bp that can be written as a gradient tensor

| '
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BBZ
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Ay

9B
z

Bz

Just as the quadrupole tensor in Table 5.1 is traceless and symmetric, the

->
condition that V x B_ is zero in a current-free region implies that the

> >
gradient tensor for Bp is symmetric, so that we can write the Bp gradient

tensor as

9B
ox

The condition that V -

oB
z

gy

9B
ox

9B

z
3y (5.23)

9B
z

39z

->
b = 0 implies that this tensor is also traceless.

We can therefore omit both aBz/Bz and sz from our discussion, since they

can be derived from the other two terms of each trace.

-Ahe following pairs of quantities will be required for the sensitivity

analysis

(5.24)

A
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(5.24 cont'd) oB
4 == ;'
Tooe 7 Txx
9B
5: ?};x ’ ny
>,
QUADRUPOLE 8 == 0,
BBZ
¥ ox °? sz
BBZ
8: ;}:— 5 Qyz

The terms on the right correspond to the eight axes in model space, while
the quantities on the left correspond to the eight components of each
sensitivity vector. If each set of eight quantities is thought of as a
(1 x 8) matrix or an 8-vector, then the magnetometer output corresponds to the
inner (scalar) product of these two matrices (vectors). In computing the
gradients of Ep using Eq. (2.3), it is important to note that T is the
location of the pick-up coil and T is the location of the model, and the gra-
dients are computed with respect to the source location. The sign of I
(or ;p) can be chosen to insure, for example, that Qxx as shown in Fig.
5.1 will produce a positive Bx on the positive x-axis.

The eight sensitivity vector components for each of the vector mag-
netometer axes are listed in Table 5.2. These results, which were
obtained by computing the appropriate gradients of ;p’ could also be ob-
tained by computing the appropriate gradients of the potentials in Table

5.1. Comparison of the two methods shows that a factor of uo/éw must

multiply each term in Table 5.2 to provide the proper units, and an

additional factor of 1/2 must multiply the quadrupole terms to provide a
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Fig. 5.1. The source~sink pictures for the dipole and quadrupole in the

traceless tensor representation.
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TABLE 5.2

The sensitivity vector components for each term of a dipole-quadrupole

model and each axis of a vector magnetometer.

Each term should be multi-~

u
plied by.z% ; the quadrupole terms should be multiplied by a factor of %.

Bx Magnetometer

By Magnetometer

Bz Magnetometer

yy

xy

Xz

yz
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r r
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TABLE 5.3

' ‘ The sensitivity vector components for each axis of a vector magnetometer

located at the points (1, 0, 0), (0, 1, 0) and (0, O, 1) obtained from

the equations in Table 5.2. {

] ] P [—y —y

(1, 0, 0) (0, 1, 0) (0, 0, 1)
B B B B B B B B B |
X Y X By X
m 0 0 -1 0 0 -1 0 0
m 0 -1 0 0 2 0 0 -1 0
m, 0 0 -1 0 0 -1 0 0 2
Q 6 0 0 0 -6 0 0 0 -6
XX
: Q -6 0 0 0 6 0 0 0 -6
[ vy
| Qxy 0 -6 0 -6 0 0 0 0 0
sz 0 0 -6 0 0 0 -6 0 0
Qyz 0 0 0 0 0 -6 0 -6 0
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*
correct Taylor's expansion of Bp.
Table 5.3 lists the sensitivity vector components for vector magneto-

meters a unit distance from the source along the positive x, y, and 2z

s wmn B N

axes. It is important to note from the table that Qyz does not affect

g(l, 0, 0), while sz and Qyz do not affect E(O, 1, 0) and E(O, Q;, 1Y, 2
respectively. This is in contrast to the single dipole case discussed _I
previously, in which the invertability of the field equations was depen- —z i
dent only upon distance from the source. Table 5.3 can also be used to e
clarify the orientation of the field from each quadrupole in Fig. 5.1. j
Given the sensitivity vector equations in Table 5.2, the previous
numerical e#amples can be readily extended to include the quadrupole terms. l
However, the information matrix will then be (8 x 8), which can be manipu-~ I

lated most efficiently with a digital computer and thus will not be

addressed further in this report.
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VI. NONLINEAR PROBLEMS
In all of the models discussed so far, the field equations were
linear with respect to the source parameters. For this reason, the com-
putation of the sensitivity vectors was simple, and the results were
consistent with the reciprocity theorem. If we had chosen the position
of the dipole as a model parameter, the three components of r' in Eq. (2.3)
would represent three non-linear terms in the field equation. We will now

proceed to extend our sensitivity vector techniques to include this case.

6.1 Taylor's Series Linearization

In section II, we showed that for linear systems the fields and model
are related by an equation of the form

N n v
F=THM (6.1)

v 4
where F is an n x 1 matrix, M is an m x 1 matrix, and T is m x n. In the

non-linear case, we can write

F = £01) (6.2)

NN
where f(M) represents a set of n non-linear functions of the m model para-

v
meters. For example, each equation in f could be a different polynomial.
n
If we choose a point in model space M° and determine the corresponding

Vo
point in field space F

= f(M) (6.3)

N,
If we restrict ourselves to the point Mo, we can write this as

n e '
F° = 1° M° (6.4)

N
We can then approximate f in a region about this point using a Taylor's

P
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N
series expansion of each of the n equations in f. In matrix notationm,

these can be written as

N NN
F = £(M)
N ’bo
a 'E(;}o) + Z—f@‘—l % M‘j’) Bty A (6.5)

The summation containing the partial derivative can be represented by a

matrix multiplication, so that the equation reduces to

(o}

n Yo N " "o K
F=F +IJM)M-M)+ ... (6.6)

’b’b '\:
where J(M ) is the Jacobian matrix J(M) evaluated at M° , with

Bfl afl
anl aMm
NN . .
JM) = 6.7)
of of
i 23t
3M1 BMm

N
The right hand side of Eq. (6.5) is a linear vector function of M which
v N,
best approximates the non-linear function f(M) at the point M°. This
N voa,
linear function describes the tangent hyperplane to the surface F = f(M)
~,
at Mo.
N
If we know F from a series of measurements and wish to determine the
N
corresponding M, it is necessary to solve Eq. (6.2). One way to do this
~ o ~o
is make a trial guess for M, say M, and use Eq. (6.3) to compute F .

The error in the fields can be written as

N o
AF = F - F (6.8)
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From Eq. (6.6), the error in the model is given by
N N n, NN s N
MM =M - M° = JO)L aF (6.9)
The choice of the point for computing the Taylor's series can be changed
v N N
to Ml = M° + AM and the process repeated iteratively to obtain the desired
accuracy. Of course, problems will occur if the Jacobian matrix is non-

N
invertable or if the choice of M° leads to a phantom solution.

.6.2 Sensitivity Vectors for Non-Linear Systems

If we compare Eq. (6.5) with Eq. (2.7) which defined sensitivity‘vec-

tors, we see that

F, =F°+ wl vne =Wy 4, Lo (6.10)

o i o
=F + S ,M—M .
& 121(1)3(3 ) (6.11)
which by Eqs. 6.8 and 6.9 becomes
'\JT’\l
AFi = Si AM (6.12)

Using Eq. (6.4) instead of Fo, we could also have written Eq. (6.11) as

Fi = T M, + S M-M) (6.13)

It is apparent that the sensitivity vectors no longer correspond to the
v
rows of T, but instead to the rows of the Jacobian matrix.

The derivations of Section IV can be repeated to relate this to the

"B
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N
informat ion matrix. Multiplying Eq. 6.12 by Si and summing oyer all mea-

surements, we obtain

N AL,
= Ol
Z S, OF, Z S, 5, AM (6.14)

This can be solved for Kﬁ

n -1 n

s z: v z:«, s i
AM = Si Si Si AFi (6.15)

Using Eq. (6.11), we can also write

n
M+ RD L s, & - £ (6.16)
i=1
This equation, which uses sensitivity vectors and the information matrix,
represents the solution of the linearized version of our original non-
linear field equation.

Thus we see that even with non-linear systems, sensitivity vectors
have a straightforward mathematical interpretation. As in the linear case,
their utility lies in their simple physical interpretation in terms of
measurement sensitivity and in their suitability for graphical presenta-
tion. It is important to recognize that in practice, sensitivity vectors
can be determined either analytically or numerically. If we have a
measurement that is a linear function of some variables and a non-linear
function of several others, we can use the sensitivity vector approach to
determine how the measurement is affected by each variable, regardless of
whether the variable has a linear or non-linear effect on the measurement.

However, we have just shown that the interpretation does depend somewhat
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on whether the dependence is linear or non-linear. If the ith measurement

is described by F,, it follows from our original definitions that for the

i’

linear case, the sensitivity vector for this measurement is
->
S, =V, F (6.17)

and that

>
F, =5 *M (6.18)

Because of the linear relationship, the change in the measurement result-

ing from a change in the model is simply

linear case,

> —
AF, =S, « AM o
5 : any AM

(6.19)

In the non-linear case, the sensitivity vectors is still given by Eq.
(6.17), but we have shown that Eq. (6.18) does not apply, and that (6.19)

does apply as long as higher order terms can be neglected. Thus we can

write

e non-linear case,

>
AF, = 5. - AM (6.20)

->
small AM

This leads us to the important conclusion

If sensitivity vectors are interpreted as a measure
of how a measurement is affected by a small change
in the model, then linear and non-linear problems
can be treated identically.

6.3 The Sensitivity of a Vector Magnetometer to Dipole Position

As a non-linear example of sensitivity vectors, we will extend our
previous example and determine the sensitivity of a vector magnetometer

to small changes in the location of the dipole. The sensitivity of Bx to

e Sy T N
e

A
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changes in dipole location can be determined by computing the gradient of
Bx(;)’ given by Eq. (2.4), with respect to ;'. The resulting sensitivity

vector is

3B_ (%) ., anx(?) i

-»> X '
B0 = o 1+ 2 (6.21)

This can be combined with the sensitivity vector for the dipole components,

to obtain

W . Wy Gy WO).
L L]
om i 3 ox' i e oy’ i

§(BX) " m
X Y +

(6.22)

= sli + 525 + s3i' + 343'
The analytic expressions for these sensitivity vector components, as well
as tﬁe corresponding ones for By’ are listed in Table 6.1. It is impor-
tant to note from Eq. (2.3) that the gradient of E with respect to T is
equal, with opposite sign, to the gradient with respect to t'. Thus 83
and‘S4 also describe, if multipled by -1, the change in the measurement
produced by a small change in the magnetometer location.

The equations for S3 and 84 indicate that the position sensitivity
at a particular location depends upon the dipole components. For this
reason, we must choose m for example of position sensitivity. As an ex-
tension of Table 3.3 and Figure 3.2, Table 6.2 lists Bx, By, the corres-
ponding values of S3 and 84, and the quantity V34 for 2 dipole orientations,
where

Vi, = |s3(nx)sa(ny) - Sa(By)sa(Bx)| (6.23)

Comparison of the m= (1, 0) data for locations A and E shows that a vector
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TABLE 6.1
The four components of the sensitivity vectors of Bx and By magnetometers
- that describe how Bx and By are affected by small changes in the components ‘

n and position of a dipole located at the origin.

s, (Bx) = == % =R - )

1 §,08.) * == &~ (%)

o2
=

"
|

Lo e T g 3]
54(B,) 5 [mx(6x 9xy?) + m 1227y - 3y%)

Sa(Bx) --——% = [mx(12x2y - 3y3) + my(-3x3 + 12xy2)]

"
\llH

(]

@
|
]

Sl(By) (3xy)

: PG S N '
Sz(By) s (3y r?)

A SV T VAR R S e
‘

R e 2 3 —2v3 2]
S3(By) vy 7 [mx(12x y - 3y°) + my( 3x° + 12xy°)

I W

1 3B :
E (: 84(By) e [mx(—3x3 + 12xy?) +-u&(s9x2y + 6y3ﬂ
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field measurement is twice as sensitive (V34 = 18) to changes in dipole
position for measurements on the dipole axis than for equidistance mea-
surements perpendicular to the dipole axis (V34 = 9). The position
sensitivity is even lower at point D (V34 = 6.0). The relationship of
the position sensitivity vectors for Bx and By measurements is shown
graphically in Fig. 6.1.

While S3 and S4 follow directly from the slope of Bx Vs X, Bx Vs Y,
By vs X and By vs y signatures passing through each measurement point, the
orientation of the position sensitivity vectors follows more directly from
another type of plot. From Eq. (6.20), the change in field associated

with a change in position will be

= = ] 1
ABi = Si . AMi = S3Ax + SaAy
-> -
= V' Bi(r) . Ar' (6.24)
= VB, . Ar

Thus any displacement of the magnetometer parallel to a line of constant
Bi will produce no change in field. A corresponding displacement in the
source will also produce no change. By identifying the sensitivity vec-

tor Si with the spatial gradient of Bi’ we see immediately that Si must

be perpendicular to lines of constant Bi' Given that

uo m(2x2 - y2) uo 3mxy
Bx =-4—1;—-————r5 By 'z;_rs (6.25)

it follows from the parametric substitution y = ax that the lines of con-

stant Bx must satisfy the equations

- SRS
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while those for By must satisfy

1/3
1 m(3a)
% il y = ax (6.27)

B 41 (1 + a?)
y

-
The lines where the magnitude of B is constant satisfy

e 13 & o 1/6
X = —_)—- -——o e s y = X (6-28)
|B| 4m @ * a9t ?
\ '

One set of iso-Bx lines is plotted in Figure 6.2, along with the corres-
ponding Bx sensitivity vectors for the points in Fig. 6.1. Clearly, the
position sensitivity vector corresponds to the gradient vector at each
point. Thus a complete set of iso—Bx curves, in the form of a contour
map, would be an efficient means of visually identifying the magnetometer
location with either high or low position sensitivity. Furthermore, since
iso—Bx lines need not be drawn for fields lower than the ambient noise,
this type of plot will also identify the zones where Bx can be measured
with adequate signal to noise ratio.

The 1so-By curves are shown in Fig. 6.3, with the obvious difference

that By from an x dipole is zero on the coordinate axis while Bx is a

maximum there. Figure 6.4 shows the iso-|g| curve, which can be seen to
bound the curves for Bx and By' This figure shows that an instrument that
measures ]El directly would have a much simpler position response than one !
measuring only a single component. It is also important to note that by

the reciprocity theorem each of these iso-field curves can also be thought é
of as an iso-sensitivity curve for a magnetometer. This concludes the ana-

lysis of non-linear sensitivity vectors. Because of their straightforward

interpretation, the iso-field plots and sensitivity vectors may be especially

useful for studying the position sensitivity of quadrupole models.
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6.2 The lines where lel produced by m is a constant.
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Fig. 6.3 The lines where IByI produced by m

is a constant.
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VII. CONCLUSIONS

In this report, the mathematical basis of sensitivity vectors has

been developed, with specific application to the measurement and modelling

of magnetic fields. In the course of analyzing several examples, the

following questions were answered:

1.

9.

Given two magnetic field measurements, what criteria must
be satisfied to allow determination of the two dipole com-
ponents consistent with that field?

For a measurement of the vector magnetic field at a fixed
distance from a dipole source, what is the optimum magne-~
tometer position?

How do various configurations of single axis magnetometers compare
in terms of their ability to determine model parameters,
and how can this be assessed quantitatively?

How can the presence of noise be included in such an
analysis?

What is the relationship of the sensitivity vector concept
to the reciprocity theorem of electromagnetic fields?

How can sensitivity vectors be used to study multipole
models?

What is the interpretation of a sensitivity vector for a
non-linear model?

What is the position dependence of a vector magnetometer,
and how does it vary with position?

Where can a magnetometer be placed relative to the model
to insure adequate signal to noise ratio?

Based on the ability of the sensitivity vector approach to answer these

questions quantitatively, it appears that this type of analysis may be

valuable for optimizing magnetometer array configurations. It is re-

assuring that the results obtained in this report are consistent with both

a modeller's intuition and more abstract mathematical analysis, particular-

ly in that this method can be readily extended to more complicated systems
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where intuition fails.
Two specific recommendations follow from this:
1) Interactive computer code should be developed to allow

accurate and rapid analysis of magnetometer sensitivity
o and comparision of magnetometer configurations.

-

2) The sensitivity vector analysis should be extended to ')
include the magnetic field from electric current dis-
tributions, and possibly the electric field from these
currents.

| U |

In conclusion, sensitivity vectors are a potentially valuable tech-
nique that can be readily applied to the measuring and modelling of mag-
netic fields. 1Its greatest benefit over other techniques is that it

allows simple, graphical display of magnetometer sensitivity.
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Figure Captions (cont'd)

Fig. 6.2

Fig. 6.3

Fig. 6.4

The lines where |B_ | produced by m 1is a
COnstmt . . L] . . . L . L] . . . . .

The lines where |B | produced by m is a
constant . . . . . . . . . .

>
The line where |B| from m_is a constant

62
63

(e——— 2’ ' =4 -

= — P RO—— by o A
——3 [Se—— ) _,J L_‘ Sebioaiagld ';._w N

|
!
i
H
!
i
i

PRV,

R e e




-69-

IX. LIST OF TABLES

Table Page

3.1 Sensitivity vectors at several points equi- |
distant from a dipole. The data are plotted a2
N e R A O 8 31
3.2 The quantity V = |Sx SY - Sy Sx | computed | ‘

]2 3 (e ‘
for pairs of Bx measurement points in the 1

|
first and second quadrants. 5T S A Dk A 12 | j

3.3 The coordinates and sensitivity vector 1

components for Bx and By measurements in

the first quadrant. The data are plotted in

Fig. 3.2. ST N e s oo i ol e e s e b 12 |
4.1 The information matrices for each of the mea- |
surement points and pairs of points in Table 3.2. . 19
4.2 Sensitivity vectors and information matrices for
the line of Bx magnetometers in Fig. 4.2. S O O 25
4.3 Sensitivity vectors and information matrices for j
the line of By magnetometers in Fig. 4.2. Sl e e 26 |
4.4 The quantity V for various conbinations of Bx

and By magnetometers. The locations are shown

in Fig. 4.2. The mean distance of the measure- 1]

ments to the dipole is listed under r. . . . . . . . 30 e
5.1 The traceless tensor multiple expansion for a
distributed magnetization. . . . . . . ¢ ¢ ¢ 0 . . . 40
5.2 The sensitivity vector components for each term
of a dipole-quadrupole model and each axis of a i <
vector magnEtomMELEY. « v & & 5% 5 v 6 s s 8 s b b 47
5.3 The sensitivity vector components for each axis

of a vector magnetometer located at the points p
(1, 0, 0), (0, 1, 0) and (0, O, 1) obtained
from the equations in Table 5.2. . . . . . . . . . .

6.1 The four components of the sensitivity vectors
of Bx and By magnetometers that describe how

Bx and By are affected by small changes in the

components and position of a dipole located at
the origin. AT R R A R S (T TR S Y




S

- A

0=

List of Tables (cont'd)

Table

6.2 The position sensitivity vectors S3 and S4
of Bx and By measurements for two dipole

orientationes il o o e o o atale e o &b wits

57

i e
N ——

\’

=

= o




l -71- !
‘ I ¥
; U X. LIST OF SYMBOLS ) 4
!
[ Symbols
->
, l A Magnetic vector potential
| |
= |
B Magnetic induction 11
-
( Bp Magnetic induction from Ip in pickup coil i
> i
[ E Electric field ]
]
4" |
F, Fi Scalar field measurement matrix 5
{ 5 : |
f Non-linear functions of M !
|
i IP Test current
3 e :
, I Identity matrix :
i, 3, ks ék Cartesian unit vectors f
> |
% t
f J Jacobian matrix 1
N
¢ M, Mi Model matrix |
tad WL m, m, Magnetic dipole i

N
Dimension of M

=N
8
x
=

=

{

' 3 nxl Dimension of F ’

E g [ INil Noise sensitivity vector :

' z

i v i

\ E n Q, Qij Quadrupole Tensor ’,

! 1 N

7' é ' R Information matrix

| § [

{ ;, T Field and Source point distance vectors

{ n -»> 4

| 1 n Sy» Si, six Sensitivity vector

| n

ﬁ T, Tij Transfer matrix

A Model space volume




~72=

List of Symbols (cont'd)

Symbols

040 94y

Noise weighting function

Iso~field plot parameter

Kronecker Delta

Magnetic flux

Multipole unit potential
Magnetic permeability of

Gradient with respect to

Gradient with respect to

Gradient with respect to

free space

>
r
F
v
M

e

!
s

P g

e &Em o3

[ semee., |

B s

T e S R R S

*
()




-73-

-

INITIAL DISTRIBUTION

Dr. W. M. Wynn !

Copies CENTER DISTRIBUTION
_ 1 NRL (Code 5294) Copies Code
| Mr. R. Clement 1 2704 1
{ 5 2704, F. E. Baker
3 NUSC/NL 1 2731, S. H. Brown |
1 Code 343 (Mr. E. Soderberg) 2 2734, D. A. Nixon i i
1 Code 401 (Dr. R. Kasper) 1 2734’ F. B' Walker
’ . . ‘ |
1 Code 401 (Mr. J. Frye) 10 2734, B. R. Hood | £
1 522.2 ‘
1 NCSC (Code 792) 9 5231
g

5 NSWC/WOL
1 Code E22 (Mr. K. Bishop)
1 Code R43 (Mr. M. Kraichman) |
1 Code E22 (Mr. M. Lackey) ‘
1 Code R43 (Dr. R. Brown)
1 Code E22 (Mr. E. Peizer)

T e

6  NAVSEA 5
1 SEA 05D
2 SEA 99612
3 PM2 (Mr. J. Crone
Mr. Welsh
CDR A. Cotterman)

Dr. J. Czika

30 Vanderbilt University
Dr. J. Wikswo, Jr.

B R

1 University of Pennsylvania
Dr. R. Showers

12 DDC

004 N AR S TR

I 1 Science Applications, Inc.




e

s

£
&
jé
3
-

DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH-

NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF
THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM-
INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE
THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION
OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN
TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE
NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC
MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE
BASIS.




